Does the passability of apertures change when walking through human versus pole obstacles?
نویسندگان
چکیده
The current study set out to evaluate how individuals walk through apertures created by different stationary obstacles. Specifically, we examined whether the passability of apertures differed between human and pole obstacles by quantifying aperture crossing behaviors such as the critical point. Participants walked an 8m path toward a visible goal located at the end. Two obstacles were positioned 5m from the starting location and participants were instructed to pass between the obstacles without hitting them. The distance between the obstacles ranged between 1.0 and 1.8× the participant's shoulder width. Results revealed that, when the obstacles were humans, individuals rotated their shoulders more frequently at larger apertures, as evidenced by a larger critical point (1.7 vs 1.3 for poles), initiated shoulder rotations earlier, rotated to a larger degree, left a wider clearance between their shoulders and the obstacles at the time of crossing, and walked slower when approaching and passing through the obstacles compared to when the obstacles were poles. Furthermore, correlational analyses revealed that the amount of change between an individual's critical point for the poles and the critical point for the human obstacles was related to social risk-taking and changes in walking speed. Therefore, it appears that the passability of apertures changes when walking between two people versus two objects such that more space and greater caution are needed for human obstacles. It is possible that the greater caution observed for human obstacles is to account for the personal space needs of others that do not exist in the same extent for poles and that the degree of caution is related to social factors.
منابع مشابه
Visual guidance of walking through apertures: body-scaled information for affordances.
A necessary condition for visually guided action is that an organism perceive what actions are afforded by a given environmental situation. Warren (1984) proposed that an affordance such as the climbability of a stairway is determined by the fit between properties of the environment and the organism and can be characterized by optimal points, where action is most comfortable or efficient, and c...
متن کاملWalking through Apertures in Individuals with Stroke
OBJECTIVE Walking through a narrow aperture requires unique postural configurations, i.e., body rotation in the yaw dimension. Stroke individuals may have difficulty performing the body rotations due to motor paralysis on one side of their body. The present study was therefore designed to investigate how successfully such individuals walk through apertures and how they perform body rotation beh...
متن کاملPerception of Robot Passability With Direct Line of Sight and Teleoperation
OBJECTIVE To examine participants' abilities to judge the passability of robots through apertures in direct-line-of-sight (DLS) and teleoperation (TO) conditions, two experiments were conducted. BACKGROUND Past work has demonstrated that operators find it difficult to perceive aspects of remote environments during TO. For example, urban search-and-rescue operators have experienced difficulty ...
متن کاملNavigating through apertures: perceptual judgements and actions of children with Developmental Coordination Disorder
Passing through a narrow gap/aperture involves a perceptual judgement regarding the size of the gap and an action to pass through. Children with DCD are known to have difficulties with perceptual judgements in near space but whether this extends to far space is unknown. Furthermore, in a recent study it was found that adults with DCD do not scale movements when walking through an aperture in th...
متن کاملDirect perception of action-scaled affordances: the shrinking gap problem.
The aim of this study was to investigate the perception of possibilities for action (i.e., affordances) that depend on one's movement capabilities, and more specifically, the passability of a shrinking gap between converging obstacles. We introduce a new optical invariant that specifies in intrinsic units the minimum locomotor speed needed to safely pass through a shrinking gap. Detecting this ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Acta psychologica
دوره 162 شماره
صفحات -
تاریخ انتشار 2015